Dạy trí tuệ nhân tạo Hóa học để nó có thể tìm ra loại thuốc mới

Điều gì sẽ xảy ra nếu bạn trộn Aspirin và Ibuprofen lại với nhau? Cả hai loại thuốc này đều có tác dụng giảm đau và hạ sốt. Giáo sư Aspuru-Guzik đến từ Đại học Harvard cũng không biết chắc chắn. Nhưng ông có thể hỏi một người trợ lý đặc biệt của mình. Nó là một hệ thống trí tuệ nhân tạo có thể hỗ trợ đắc lực con người trong công cuộc tìm kiếm những loại thuốc mới.


Ngày nay, những nghiên cứu dược phẩm tiên tiến nhất đang dựa trên nền tảng phần mềm và mô phỏng máy tính.


Phần mềm thực chất được viết ra từ những quy tắc mà các nhà hóa học phát hiện được. Nó được dùng để thu thập dữ liệu từ một kho khổng lồ, chứa những phân tử tiềm năng có thể được sử dụng để chế tạo thuốc. Trong khi đó, mô phỏng máy tính được sử dụng để tiên đoán những cấu trúc phân tử hữu ích chưa từng tồn tại trong thực tế.




Dạy trí tuệ nhân tạo Hóa học, nó có thể tự tạo ra loại thuốc mới cho con người.

Cả hai công cụ này đều có những hạn chế riêng. Phần mềm thì bị giới hạn bởi những quy tắc ban đầu của nó, đôi khi chúng không được cập nhật nhất. Trong khi đó, mô phỏng máy tính bị giới hạn bởi độ chính xác mà nó được thiết lập. Nghiên cứu dược phẩm vẫn phải dựa nhiều vào yếu tố con người.


Trên con đường tìm ra những công cụ mới trong lĩnh vực này, Aspuru-Guzik và nhóm nghiên cứu của ông đã phát triển một hệ thống trí tuệ nhân tạo có thể đảm nhiệm thay vai trò của con người. Cho dù chưa thể trở thành một nhà hóa học, nó ít nhất cũng sẽ trở thành một người trợ lý đắc lực có suy nghĩ và trực giác khoa học.


Hệ thống trí tuệ nhân tạo của Aspuru-Guzik có thể tự nó 'tưởng tượng' ra những cấu trúc phân tử. Quá trình này không phụ thuộc nhiều vào con người và cũng không cần đến những mô phỏng dài dòng. Lí do vì nó có thể tự trau dồi những kinh nghiệm riêng của mình từ những thuật toán máy học (machine-learning) và dữ liệu của hàng trăm ngàn phân tử.


'Nó thực hiện các khám phá một cách có trực giác hơn, sử dụng kiến thức đã được học, giống như những điều mà một nhà hóa học sẽ làm', Aspuru-Guzik nói. 'Con người có thể trở thành những nhà hóa học uyên bác hơn, nếu có một hệ thống như vậy làm trợ lý'.




Hệ thống của Giáo sư Aspuru có thể tạo ra hàng tỷ tỷ phân tử.

Hệ thống của Giáo sư Aspuru-Guzik được xây dựng, sử dụng một kỹ thuật máy học được gọi là 'deep learning'. Kỹ thuật này ngày nay đã rất phổ biến trong ngành công nghệ, đặc biệt là tin học và máy tính. Tuy nhiên trong lĩnh vực khoa học tự nhiên, nó còn khá mới mẻ.


Deep learning sử dụng một thứ như mô hình sinh mẫu (generative model). Trong đó, nó được cung cấp một kho dữ liệu khổng lồ và sử dụng những gì học được để tạo ra những dữ liệu mới. Trong lĩnh vực công nghệ tin học, mô hình này thường được sử dụng để tạo ra hình ảnh, lời nói hoặc văn bản. Ví dụ như tính năng trả lời thông minh (Smart Reply) của Google với email.


Tuy nhiên trong tháng trước, Aspuru-Guzik và các đồng nghiệp của ông tại Đại học Harvard, Đại học Toronto và Đại học Cambridge đã chứng minh rằng deep learning có thể vượt ra ngoài những giới hạn của nó hiện tại. Họ công bố kết quả nghiên cứu cho thấy deep learning có thể được áp dụng vào cả nghiên cứu khoa học tự nhiên.


Một mô hình deep learning đã được tạo ra, và các nhà khoa học đào tạo nó với 250.000 phân tử dạng thuốc. Sau đó, hệ thống này có thể tạo ra các cấu trúc phân tử mới bằng việc kết hợp những tính chất của các loại thuốc hiện có. Không những vậy, nó còn có thể đưa ra dữ liệu về tính chất của loại phân tử mới, ví dụ như khả năng hòa tan hoặc nó có thể dễ dàng được tạo ra trong thực tế hay không.




Liệu trong tương lai, trí tuệ nhân tạo có thể thay thế vai trò của các nhà khoa học?

Vijay Pande, một Giáo sư Hóa học tại Đại học Stanford cho biết nghiên cứu mới này đã tiếp tục chứng tỏ cho chúng ta thấy: Trí tuệ nhân tạo sẽ thay đổi cả lĩnh vực nghiên cứu khoa học tự nhiên. Nó gợi ý rằng một phần mềm deep learning có thể lấy kiến thức hóa học làm đầu vào.


Điều này chắc chắn sẽ giúp ích rất nhiều cho các nhà khoa học. 'Tôi nghĩ rằng nó có thể được áp dụng rộng rãi', Giáo sư Pande cho biết. 'Nó có thể giữ vai trò trong việc tìm kiếm và tối ưu hóa các loại thuốc tiềm năng, hoặc trong nhiều lĩnh vực khác như năng lượng mặt trời hoặc nghiên cứu chất xúc tác'.


Thật vậy, ngay lúc này, các nhà nghiên cứu đã tiếp tục thử nghiệm hệ thống trí tuệ nhân tạo này trên một cơ sở dữ liệu mới trong ngành khoa học vật liệu. Họ đào tạo nó với những phân tử LED hữu cơ, thứ mà tạo nên những màn hình cong trên các thiết bị điện tử.


Mặc dù tiềm năng là rất lớn, các nhà nghiên cứu sẽ phải tiếp tục cải thiện hệ thống của họ. Nó phải được đào tạo để nâng cao những kỹ năng hóa học, bởi một số cấu trúc phân tử mà hệ thống tạo ra được các nhà khoa học đánh giá là vô nghĩa.


Pande nói rằng một thách thức để làm cho những phần mềm có thể học được kiến thức hóa học là phải có một nguồn dữ liệu đầu vào tốt. Đây có thể là điều mà nhóm nghiên cứu chưa thực hiện được.


Hình ảnh, lời nói, văn bản đã được chứng minh là nguồn dữ liệu hoàn hảo cho các hệ thống trí tuệ nhân tạo. Vì vậy mà những phần mềm ngày nay đã có thể nhận dạng được hình ảnh, giọng nói và dịch quá tốt những văn bản ra các ngôn ngữ khác nhau. Tuy nhiên, khi làm việc với những cấu trúc hóa học, chúng chưa thể hiện được đúng khả năng của mình.




Giáo sư Aspuru-Guzik từ Đại học Harvard.

Aspuru-Guzik và các đồng nghiệp của ông cũng đang suy nghĩ về điều đó. Họ tiếp tục phải nghiên cứu thêm những tính năng để giảm tỉ lệ sai sót của hệ thống trí tuệ nhân tạo này. Aspuru-Guzik cũng hi vọng rằng có thể đưa vào hệ thống của ông nhiều dữ liệu hơn, cải thiện kiến thức hóa học của nó. Điều này tương tự như tính năng nhận dạng hình ảnh phải được xây dựng trên một cơ sở dữ liệu với hàng triệu bức ảnh.


Bây giờ, khi nhìn vào lĩnh vực khoa học tự nhiên, Aspuru-Guzik đã thấy khoảng 100 triệu công bố nghiên cứu liên quan đến cấu trúc hóa học. Tất cả chúng đang được lưu trữ bởi Hiệp hội Hóa học Hoa Kỳ. Trong tương lai, ông hi vọng có thể đưa tất cả những dữ liệu này vào một phiên bản chương trình trí tuệ nhân tạo của mình. Nếu Aspuru-Guzik thành công, chúng ta khó có thể tưởng tượng ra 'người trợ lí' của ông có thể thực hiện được những gì.


Cập nhật: 07/11/2016
Theo Trí Thức Trẻ

TIN LIÊN QUAN

10 công dụng của thuốc Aspirin mà bạn không biết đến

Aspirin không chỉ có tác dụng giảm đau và hạ sốt mà còn có những công dụng khác không ngờ tới. Trang Bright Side đã đưa ra 10 công dụng tuyệt vời ít ai biết đến của Aspirin.

Cảnh báo: Thuốc giảm đau có thể làm tăng nguy cơ suy tim

Một nghiên cứu lớn nhất vừa cho thấy uống thuốc giảm đau thông thường như ibuprofen làm tăng nguy cơ nhập viện vì suy tim trong vòng hai tuần.

Đại học Harvard phát triển vaccine di động không cần bảo quản lạnh

Thay vì phải bảo quản lạnh vaccine vốn tốn điện, phức tạp và đòi hỏi yêu cầu khắt khe, bây giờ người ta chỉ bảo quản nguyên liệu thô trực tiếp tạo ra thuốc hoặc vaccine.

Đã có loại thuốc giảm đau không gây nghiện, quá liều

Các nhà khoa học mới đây đã phát minh ra một loại thuốc giảm đau giống morphine, tuy nhiên giảm bớt những tác dụng phụ nguy hại như gây nghiện hay quá liều.

Nhiều người Mỹ không tiêm vắc xin, mua thuốc tẩy giun với hy vọng ngừa COVID-19

Nhu cầu tăng cao với ivermectin ở Mỹ dù không có bằng chứng nào rằng thuốc này hiệu quả trong ngừa và điều trị COVID-19.

Chất gây nghiện Ketamine sẽ được dùng làm thuốc chữa trầm cảm?

Cơ quan Cơ quan Thực phẩm và Dược phẩm Hoa Kỳ (FDA) đang xem xét khả năng cho phép sử dụng Ketamine (một hợp chất có khả năng gây nghiện) vào điều trị bệnh trầm cảm.

5 ngộ nhận chết người về bệnh sốt xuất huyết

Khi bị sốt xuất huyết, nếu vô tình uống aspirin, tình trạng chảy máu ở người bệnh sẽ trầm trọng hơn, có thể xuất huyết dạ dày nguy hiểm đến tính mạng.​

Vi khuẩn kháng được tới hai loại kháng sinh dự phòng đã được tìm thấy tại Mỹ

Kháng sinh colistin và carbapenem là phòng tuyến cuối cùng của con người, nhưng có lẽ không còn lâu nữa.

THỦ THUẬT HAY

15 mẹo chụp ảnh đơn giản giúp người không chuyên cũng trở thành một nhiếp ảnh gia chuyên nghiệp

Bạn đam mê chụp ảnh, thế nhưng lại không đủ kinh tế để có thể đầu tư vào những thiết bị nhiếp ảnh chuyên nghiệp. Vậy làm sao để sáng tạo ra được những bức ảnh đẹp?

Thủ thuật truy cập nhanh ứng dụng Notes ngay trên màn hình khoá của iOS 11

iOS 11 mang đến cho người dùng khá nhiều các tính năng và cải tiến mới rất thú vị mà người dùng cần phải bỏ chút thời gian để khai thác hết chúng. Và trong bài viết này, chúng ta sẽ có một gợi ý khá hay ho mà bạn có

Những tính năng mới trên bản Liên Quân Mobile 4.0 mà bạn nên biết

Liên Quân vừa tung bản cập nhật 4.0 với giao diện mới mẻ. Sau đây mình sẽ giới thiệu những tính năng mới Liên Quân Mobile 4.0 và cách chơi mượt mà nhất

Cách chặn trang web hiển thị thông báo trên các trình duyệt

Hiện nay các trình duyệt web đều cho phép các trang web hiển thị thông báo tới người dùng. Một cửa sổ pop-up hiện ra hỏi người dùng có muốn nhận thông báo từ trang web hay không. Vậy làm sao để tắt hiển thị thông báo

Cách thay đổi độ phân giải màn hình trên Windows 10

Ví dụ như ở độ phân giải 800x600 pixel thì các icon và cửa sổ sẽ hiển thị to hơn, đem so với độ phân giải 1366x768 pixel thì bạn sẽ chứa được nhiều icon và các cửa sổ sẽ được hiển thị lớn hơn. Thông thường thì độ phân

ĐÁNH GIÁ NHANH

Đánh giá điện thoại Xiaomi Mi 8: có hối hận sau hơn 3 tháng sử dụng?

Điện thoại Xiaomi Mi 8 chính hãng là chiếc flagship được người dùng cũng như giới chuyên môn đánh giá khá cao, là đối thủ trực tiếp của iPhone X nhưng mức giá chỉ hơn 9 triệu đồng tại TCNShop. Hôm nay tôi sẽ đánh giá

So sánh iPhone 13 Pro Max và iPhone 11 Pro Max: Có nên nâng cấp không?

Bạn đang băn khoăn không biết có nên nâng cấp iPhone 11 Pro Max lên iPhone 13 Pro Max hay không? Vậy thì hãy cùng chúng tôi đem chúng đặt lên bàn cân và so sánh iPhone 13 Pro Max và iPhone 11 Pro Max để tìm câu trả lời

Trên tay SIP Yealink - Chiếc điện thoại cố định sử dụng mạng dây

Giá trị khác của điện thoại qua internet hay tổng đài trên mây là giọng nói được truyền đi là chuẩn HD. Từ chiếc Yealink T21 E2 thì từ loa ngoài, loa trên tay cầm hay lỗi cắm mic đều hỗ trợ HD Voice.